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We consider the evolution of attosecond light pulses in an optical fiber medium wherein the pulse propagation is governed 
by a fifth-order nonlinear Schrödinger equation with constant coefficients. In addition to the cubic nonlinearity and group 
velocity dispersion terms, the model incorporates the third-, fourth-, and fifth-order dispersion and nonlinear terms related to 
them. Using a complex envelope function ansatz, we find the analytical solitary wave solutions of the model under some 
parametric conditions. The reported solutions describe bright and dark solitary waves that propagate on a continuous wave 
background in the presence of higher-order effects. The constraint relations among the optical material parameters for the 
existence of these localized structures are also discussed.  
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1. Introduction 
 

Solitons are localized waves that can stably 

propagate over extremely large distances with neither 

attenuation nor change of shape, as their dispersion is 

exactly compensated by nonlinear effects. The study of 

these particle like objects has attracted considerable 

attention in recent years because they have been 

demonstrated in diverse area of science, such as plasma 

physics [1, 2], fluid dynamics [3], nonlinear optics [4, 

5], Bose–Einstein condensates [6, 7], nuclear physics [8] 

and many others. One of the most important applications 

of solitons is in high-rate telecommunications with 

optical nonlinear fibers [9], where they are used as the 

carriers for the transmission of information.  

From a theoretical point of view, the nonlinear 

Schrödinger (NLS) equation has been used successfully 

to describe the propagation of light pulses in nonlinear 

optical fibers and matter waves in Bose-Einstein 

condensates. The simplest form of this equation includes 

only basic effects on waves such as lowest-order 

dispersion and lowest-order nonlinearity. In the setting 

of optical fiber waveguides, the self-phase modulation 

(SPM) is the nonlinear effect due to the lowest dominant 

nonlinear susceptibility 
(3)  [10]. On the other hand, the 

dispersive properties of the light wave envelope are 

determined by the group velocity dispersion (GVD) [11]. 

Depending on the anomalous dispersion or the normal 

dispersion, the NLS equation allows for either bright or dark 

solitons, respectively [12]. 

With increasing light intensity, the nonlinear refractive 

index of a relatively large number of optical materials 

deviates from Kerr behavior [i.e., the refractive index varies 

linearly with the intensity I of the light pulse as: 

0 2n n n I  , where 0n  is the linear refractive index 

coefficient, and 2n  is the nonlinear refractive index 

coefficient, which originates from the third-order 

susceptibility]. In this case, such materials exhibit not only 

third-order (or pure Kerr) nonlinearity but even fifth-order 

nonlinearity. Well known optical materials with nonideality 

of the nonlinear optical response include for example 

semiconductor waveguides (e.g., AlxGa1-xAs, CdS, and 

CdS1-xSex) and semiconductor-doped glasses (see, e.g., 

[13]). The dynamics of such systems should be described by 

the so-called cubic–quintic NLS model which represents one 

of the simplest extensions of the cubic model.  
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As optical pulses become shorter, many other 

higher-order effects such as third-order dispersion 

(TOD), self-steepening, and self-frequency shift become 

important in addition to the cubic and quintic terms [9]. 

Moreover, the effect of fourth-order dispersion (FOD) 

becomes significant on the propagation dynamics when 

the pulses are shorter than 10 femtoseconds [11]. Such 

dispersion may result in solitons with oscillating tails 

[14]. The behavior of wave packet in nonlinear media 

with these effects is governed by the higher-order 

nonlinear Schrödinger (HNLS) equation which includes 

the contribution of various physical phenomena on 

short-pulse propagation and generation. Depending on 

the practical situation, many versions of theoretical 

models for describing the wave dynamics have been 

proposed in the recent literature like the Hirota equation 

[17], the Sasa-Satsuma equation [18], and the 

Lakshmanan-Porsezian-Daniel (LPD) equation [19]. 

Recently, Ankiewicz et al. have introduced a novel 

NLS-type equation incorporating higher-order odd 

(third-order) and even (fourth-order) terms and 

presented its soliton solutions and approximate rogue 

wave solutions [20]. Subsequently, the existence of 

various shapes of soliton structures governed by this 

extended model has been extensively discussed. For 

instance, Bendahmane et al. have discussed this HNLS 

equation under nonvanishing boundary conditions by 

employing the ansatz method [22]. As an interesting 

result, they obtained a W-shaped solitary wave solution 

with a platform underneath in addition to envelope 

solutions of the bright and dark types. In Ref. [20], 

dipole soliton solutions of such extended model have 

also been derived by adopting a complex amplitude 

ansatz that is composed of the product of bright and dark 

solitary waves.  

A natural extension of the theoretical studies of 

nonlinear structures in dynamical systems is to include 

the effect of the fifth-order terms besides third- and 

fourth-order terms. Very recently, a fifth-order nonlinear 

equation in the NLS hierarchy which contains fifth-order 

dispersion and nonlinear terms related to it was 

presented [23]. Remarkably, this new envelope equation 

adds an extra new quintic operator (beginning with fifth-

order dispersion) with respect to the extended model 

with cubic and quartic terms given in Ref. [20]. It is 

worth mentioning that the inclusion of fifth-order terms 

in the governing equation is essential to study the 

attosecond pulse propagation in nonlinear media. In the 

framework of this model, the basic one-soliton solution 

as well as the second- and third-order soliton solutions 

have been successfully derived by using of the Darboux 

method [23].  

In terms of practical applications, propagations of 

ultrashort (femtosecond) pulses are of particular interest 

because of their wide applications in many different 

areas such as ultrahigh-bit-rate optical communication 

systems, ultrafast physical processes, infrared time-

resolved spectroscopy, and optical sampling systems 

[24]. During recent years, attosecond pulses have also 

been the subject of extensive research in nonlinear fiber 

media. Therefore, a study of solitons or solitary waves in the 

femtosecond and attosecond regimes is significant especially 

for the recent fiber technology. 

In the present work, we derive analytical combined 

solitary wave solutions of a family of the fifth-order 

equation of the NLS hierarchy describing the attosecond 

pulse propagation in an optical fiber medium. In the used 

governing equation, we have considered arbitrary real 

parameters jr  (with 1,..,13j  ) in front of every term of the 

newly model introduced in Ref. [23].  This allows us to 

examine the individual influence of each effect on the 

propagation properties of the existing localized structures. 

Note that having an explicit analytic solution of a model 

with arbitrary coefficients has the advantage that we can also 

consider all particular cases analytically. It should be noted 

that the considered model collapses to the regular equation 

introduced [23] if setting the dependent parameters equal to 

1. Here, we will adopt the ansatz solution of Li et al. [25] to 

find the combined solitary wave solutions under some 

parametric conditions.  

The rest of this paper is structured as follows. In Sec. II, 

we introduce the theoretical model and give its particular 

cases. In Sec. III, we present two different solitary wave 

solutions of the fifth-order equation of the NLS hierarchy 

and discuss their characteristic and formation conditions of 

their existence. In Sec. IV, we give some concluding 

remarks and perspectives. 

 

 
2. Governing model 
 
Under investigation in this paper is the following fifth-

order equation of the NLS hierarchy equation with constant 

coefficients: 
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which can be reduced into the regular equation introduced in 

Ref. [23] when 1jr  with 1,..,13j  . Here ( , )E x t  is the 

complex envelope of the wave, x is the propagation variable 

and t is the transverse variable (time in a moving frame). 

Also, the coefficients 3,    and  are the third-, fourth- and 

fifth-order dispersion parameters, respectively. In our study, 

the constants jr (with 1,..,13j   ) are free real parameters.  

The model (1) contains many special NLS-type 

equations, such as the cubic NLS equation for the case 

3 0      [26], the Hirota equation for the case 

0   , 6 1r   and 7 0r   [17], the Sasa-Satsuma equation 

in the case 0   , 6 3 / 2r   and 7 1/ 2r   [18], the LPD 

equation for the case 3 0    and  1ir (with 1 ,..,5i  ) 

[21], and the extended NLS equation with third- and fourth-

order terms for the case 0  [22]. 
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It is of interest to determine the solitary wave 

solutions of Eq. (1). Obtaining exact soliton structures of 

this nonlinear equation is important from both 

theoretical and practical point of views. It is worth 

mentioning that exact solutions when they exist can help 

one to calculate certain important physical quantities 

analytically as well as serving as diagnostics for 

simulations [29]. In what follows, we will adopt the 

complex ansatz solution of Li et al. [25] to find exact 

combined solitary wave solutions of the considered 

model under certain parametric conditions.  Such ansatz 

has been successfully applied to solve many higher-

order NLS models [26-35]).  

 

 
3. The method of solution 

 

To start with, we search for the solutions of the 

physical field ( , )E x t with amplitude ( , )A x t  and linear 

phase shift ( , ) -x t kx t   as [25]  

 

 ( , ) ( , )exp ( , ) ,E x t A x t i x t                    (2) 

 

where
 

k  and  are real parameters describing wave 

number and frequency shift, respectively. Inserting Eq. 

(2) in Eq. (1) and removing the exponential term, we 

write the resulting equation as 
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where we have introduced the parameters na (with 

1,...,19n  ):  
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12 3 11 8 128 10  ( -3 - 2 ) ,a r r r r    
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17 1110   ,a r   

18 1220   ,a r   

and 

19 1310   .a r                                                                                                                              

By adopting the complex amplitude ansatz introduced by Li 

et al. [25]: 

 

   ( , ) tanh ( - ) sech ( - ) ,A x t i t x i t x                (4) 

 

where   and   are the pulse width and shift of inverse 

group velocity, respectively. Also,   and   represent the 

single dark and bright soliton amplitude, respectively. From 

the ansatz solution (4), one can see that when the time 

variable approaches infinity, the amplitude of solitary wave 

solutions is nonzero. It should be noted that ,  , k  and 

are all real values but  ,   and  can be real or complex 

numbers depending on the equation parameters [32]. 

Accordingly, the solitary wave amplitude ( , )A x t  can be 

written as: 
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and its corresponding nonlinear phase shift ( , )NL x t  is of 

the form: 
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It is interesting to note that if 0   , and then the 

ansatz solution (4) reduces to an original dark soliton. When

0   , one recovers a bright-type soliton. One can also 

point out that presence of the parameters  ,   and 

permits the ansatz (4) to describe a combined solitary wave 

solution [25]. 

Now, inserting (4) into (3), expanding tanh  terms to 

sech  terms, and equating the coefficients for the 

independent terms equal to zero, we obtain the following 13 

independent parametric equations: 

2 2 2 2 2
3 6 7 ( ) - ( ) 0,a a a        

 
           (7a)                                                      

2 2 2 2 2
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 
            (7b) 
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   (7l) 

3 2 2
14 16 17 18 19

4 2 2 2
15

 ( - )(6 2 2 2 ) -

 120 ( - ) 0.

a a a a a

a

  

   

    
 

  
 

  (7m) 

 

 
4. Results and discussion 

 

To obtain solitary wave solutions for the model (1), we 

need to impose some restrictions on the dependent 

parameters so that Eqs. (7a) - (7m) become compatible. Here 

we have found two different types of solitary wave solutions 

of Eq. (1) under certain parametric conditions. 

 

4.1. Bright solitary wave solution 

 

The first solitary wave solution we obtained here is of 

the form 

 

 ( , ) 2 sech ( - ) ,A x t i t x                     (8) 

 

for the following conditions: 

 

4 5 10 11

3 9 12 13 14 2 8 7

0,   0,   

0,   0,

a a a a

a a a a a a a a

   

       
     (9) 

 

implying, in this case, that 0   and 2i   in the 

ansatz solution (4). Substitution of these results in Eqs. (7a) - 

(7m) yields the following solitary wave parameters: 
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together with the parametric conditions: 
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  1 4 3 10 12 11 13(3r -r 4r - -3 ) r r 0.r r   

(14) 

Therefore, the exact solitary wave solution of Eq. 

(1) can be written as: 

 

   ( - t)( , ) 2 sech ( - ) ,i kxE x t i t x e            (15) 

 

and its intensity is given by 

 

  2 2 2( , ) 1 2sech ( - ) .E x t t x              (16) 

 

Physically, Eq. (15) describes a bright pulse that 

propagates on a continuous wave background which 

originates from the higher-order effects. One can see 

from Eqs. (11), (12) and (13) that the solitary wave 

parameters are dependent on the coefficients 3,    and 

  that control independently the values of third-order 

dispersion tttE , fourth-order dispersion ttttE , and that of 

fifth-order dispersion tttttE . Moreover, Eq. (10) shows 

that one must require 9 13 0r r   for obtaining a real value 

of the pulse width . 

 

4.2. Dark solitary wave solution 

 
We also find a second solitary wave solution for Eq. 

(1) of the form: 

 

 ( , ) tanh ( - ) ,A x t i t x                  (17) 

 

under the following necessary conditions: 

 

4 5 0a a  , 10 11 0,a a  2 3 7 9 14 19 0 ,a a a a a a     

12 13 0a a  , (18)

10 132 0a a  , 16 17 18 0a a a   .    

                                                                                                                

showing, in this case, that 0   in the ansatz solution (4). 

By inserting these results in Eq. (7a) - (7m), one can obtain 

the solitary wave parameters as 
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  (22) 

 

with following constraint relations:  
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(23) 

 

Having obtained the pulse parameters , , k  and  , we can 

now write the analytic solitary wave solution of Eq. (1) as 

follows  

 

   ( - )( , ) tanh ( - ) ,i kx tE x t i t x e                (24) 

 

and its intensity is given by 

 

 
2 2 2 2 2( , ) - sech ( - ) .A x t t x                  (25)  

 

Equation (24) describes a dark like solitary wave 

with a width related to the product of    .  From the results 

obtained above, one should note the universal influence of 

the fifth-order dispersion parameter on the solitary wave 

properties. It influences the form of the width, wave number, 

frequency shift, and the shift of inverse group velocity of the 

propagating solitary pulses. 

 

 
 



684         Sassi Aouadi, Houria Triki, Anjan Biswas, Salam Khan, Luminita Moraru, Seithuti P. Moshokoa, Ali Saleh Alshomrani 

 

 

5. Conclusion 
 

In this work, we studied the fifth-order equation of 

the nonlinear Schrödinger hierarchy, which governs the 

propagation of attosecond light pulses in an optical fiber. 

By adopting a complex envelope function ansatz, we 

have found the bright and gray solitary pulse (a dark 

pulse with nonzero minimum in intensity) solutions for 

the model on a continuous-wave background. The 

constraint relations among the parameters for the 

existence of these localized structures are also given. 

These attosecond pulses are helpful to increase the 

capacity of carrying information in order to make ultra-

fast communication. 

 

 

Acknowledgements 

 

This project was funded by the Deanship of 

Scientific Research (DSR), King Abdulaziz University, 

Jeddah, Saudi Arabia under grant no. (KEP-15-130-40). 

The authors, therefore, acknowledge with thanks DSR 

technical and financial support. 

 

 

References 
 

  [1] E. Infeld, Nonlinear Waves, Solitons and Chaos,  

        2nd ed., Cambridge University Press, Cambridge,  

        U.K., (2000). 

  [2] P. K. Shukla, A. A. Mamun, New J. Phys. 5,  

       17 (2003). 

  [3] Y. Kodama, J. Phys. A 43, 434004 (2010).  

  [4] P. Wong, W. J. Liu, L. G. Huang, Y. Q. Li, N. Pan,  

        M. Lei, Phys. Rev. E 91, 033201 (2015). 

  [5] R. Yang, R. Hao, L. Li, Z. Li, G. Zhou, Opt.  

        Commun. 242, 285 (2004) 

  [6] S. Burger, K. Bongs, S. Dettmer, W. Ertmer,  

        K. Sengstock, A. Sanpera, G. V. Shlyapnikov,  

        M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999). 

  [7] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel,  

        J. Cubizolles, L. D. Carr, Y. Castin, C. Salomon,  

        Science 296, 1290 (2002). 

  [8] E. R. Arriola, W. Broniowski, B. Golli, Phys. Rev.  

        D 76, 014008 (2007). 

  [9] G. Agrawal, Nonlinear Fiber Optics, 4th ed.  

        Academic Press, San Diego, USA (2007). 

[10] K. Porsezian, K. Nakkeeran, Phys. Rev. Lett. 76,  

3955 (1996). 

[11] S. L. Palacios, J. Opt. A: Pure Appl. Opt. 5,  

180 (2003). 

[12] R.Y. Hao, L. Li, Z. H. Li, R. C. Yang, G. S. Zhou,  

        Opt. Commun. 245, 383 (2005). 

[13] P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis,  

        J. Opt. Soc. Am. B 4, 5 (1987). 

 

 

 

 

 

[14] L. H. Acioli, A. S. L. Gomes, J. M. Hickmann,  

        C. B. de Araujo, Appl. Phys. Lett. 56, 2279 (1990).  

[15] F. Lederer, W. Biehlig, Electron. Lett. 30,  

1871 94). 

[16] N. N. Akhmediev, A. Ankiewicz, Solitons:  

       Nonlinear Pulses and Beams, Chapman and Hall,  

       London, (1997). 

[17] R. Hirota, J. Math. Phys. 14, 805 (1973). 

[18] N. Sasa, J. Satsuma, J. Phys. Soc. Jpn. 60,  

409 (1991). 

[19] M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A  

        133, 483 (1988). 

[20] A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev,  

        Phys. Rev. E 89, 012907 (2014). 

[21] S. Chettouh, H. Triki, A. El-Akrmi, Q. Zhou,  

        S. P. Moshokoa, M. Zaka Ullah, A. Biswas, M. Belic,  

        Optik 145, 644 (2017). 

[22] I. Bendahmane, H. Triki, A. Biswas, A. S. Alshomrani,  

        Q. Zhou, S. P. Moshokoa, M. Belic, Bright,  

         Superlattices and Microstructures 114, 53 (2018). 

[23] A. Chowdury, D. J. Kedziora, A. Ankiewicz,  

        N. Akhmediev, Phys. Rev. E 90, 032922 (2014). 

[24] G. P. Agrawal, Applications of Nonlinear Fiber Optics  

        Academic, San Diego, (2001). 

[25] Z. Li, L. Li, H. Tian, G. Zhou, Phys. Rev. Lett. 84,  

4096 (2000). 

[26] M. Du, A. K. Chan, C. K. Chui, IEEE J. Quant.  

        Electron. 31, 177 (1995).  

[27] F. Cooper, A. Khare, B. Mihaila, A. Saxena, Phys. Rev.  

        E 72, 036605 (2005). 

[28] F. Azzouzi, H. Triki, K. Mezghiche, A. El Akrmi,  

        Chaos, Solitons and Fractals 39, 1304 (2009). 

[29] H. Triki, T. R. Taha, Math. Comput. Simul. 82,  

1333 (2012). 

[30] H. Triki, F. Azzouzi, Ph. Grelu, Opt. Commun. 309,  

71 (2013). 

[31] A. K. Sarma, Commun. Nonlinear Sci. Numer. Simulat.  

        14, 3215 (2009). 

[32] W. P. Hong, Opt. Commun. 194, 217 (2001). 

[33] M. Savescu, Q. Zhou, L. Moraru, A. Biswas,  

        S. P.  Moshokoa, M. Belic. Optik 127, 8995 (2016) 

[34] A. A. Alshaery, E. M. Hilal, M. A. Banaja,  

        Sadah A. Alkhateeb, L. Moraru, A. Biswas,  

        J. Optoelectron. Adv. M. 16, 750 (2014). 

[35] Q. Zhou, Q. P. Zhu, C. Wei, J. Lu, L. Moraru,  

        A. Biswas, Optoelectron. Adv. Mat. 8(11-12),  

        995 (2014). 

 

 

 

 

 

  

 

_____________________________ 

*Corresponding author: biswas.anjan@gmail.com 


